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Objectives: The educational decision-maker often wants to know if an examinee
has mastered a sequence of instruction at some pre-specified level of accept-
ability. If the test score is above the minimal passing standard, the examinee
may be classified as having mastered the instruction; if his score is below
the minimal standard, he would be termed a "nonmaster" of the instruction.
Because of many sources of variability, misclassifications are likely to occur,
as shown in the following figure.

Classification Master
Based on Test Score Nonmaster

True Competency State
Master Nonmaster

True Positive False Positive
False Negative True Negative

The objective of the educational decision-maker is to maximize the true
classifications (True Positives and True Negatives) and to minimize the false
classifications (False Positives and False Negatives). The datum of interest
is the conditional probability that a particular examinee is in a particular
state of mastery, given his test score. The objective of the present paper
is to examine the effect of such variables as test length, number of hypoth-
esized mastery states, and the quality of the examinee population, on the
probability that an examinee is in a particular state of mastery given his test
score. Specifically, the following two questions were addressed: (a) What is
the probability of (in)correctly classifying an examinee on the basis of his
test score, and (b) How long must a test be, and what score is required so that
classification decisions might be made with some specified lower limit of
misclassification?
Theoretical framework: The statistical model which was used for classifying
students into various mastery groupings, given their test scores, is based

,..C.) upon Bayes' Theorem, where:
p(MilT) is the conditional probabilitytn of a particular student being classified n p(Mily
as belonging in the ith mastery state j =1

p(MiIT)=given his test score; N is the test
length; S is the number of mastery
states hypothesized by the decision

In maker; p(Mi 'ttj) is the conditional
probability of a person in the ith.
mastery state getting the jth test
item correct; p(Mi) is the prior

(2> probability of the representation of the ith mastery state in the examinee
Population (the of examinees who are estimated to be in the ith mastery state).
,

N -1 S n p(Milti)
p(Mi) z j=1

i=1
p(Mi)



It is assumed that the mastery states are mutually exclus-
ive, the test items are of equal difficulty, that the Lest is a test of uni-
tary skills, and that there is independence among items.

Methods and Techniques: A computer simulation of the Bayesian model was con-
ducted using the following data: -

(1) Test length (N) took on values of 5, 10, 20, 40 items;
(2) Number bf hypothesized mastery states (S) varied from 2 to 3;
(3) Prior probability of mastery for a given examinee (P(Ml)) took on values
of .9, .7, .5 when two mastery states wew'assumedi

(4) Prior probabilities of mastery states 1, 2, and 3 took on values of .5,
.3:and .2, respectively; and .25, .50, and .25, resp6ctively, when three
mastery states were hypothesized;
(5) Assuming two mastery states, the conditional probabilities of a master
getting any single item correct took on the values of .9, .8, and .7; and for
a nonmaster gettii?g any single item correct, the values were .6, .5, and .4
(indicated by p(1(Mi) in the Figures);
(6) Assuming three mastery states, the conditional probabilities of a master
(M1), intermediate master ( :12), and nonmaster (M3) getting any single item
correct were .8, .6, and .5, respectively, and another set consisted of .9,
.8, and .2, respectively (p(11Mi);
(7) The per cent correct observed scores took on the values of 60Z, 707, and
80Z.

Data Source: The conditional probabilities in (5) and (6) were needed in order
to obtain the values for the p(Miltj) in the preceding formula. Along with an
estimate of one of these conditional probabilities, it is assumed that the
decision-maker could also supply an estimate of the prior probabilities for
the states of mastery, the number of items on the test, and the number of
mastery 'states. The only thing that he would observe is the per cent of the
items that a given examinee got correct.
Results and Conclusions: Only a small portion of the results from the
simulation can be devribed in the present abstract. Discussion must there-
fore be restricted toa case in'which two states of mastery .were assumed and
the prior expectation of finding a master was equal to .9. The curvature of
each line in Figure 1 shows how the probability of claiming that an examinee
is a master given his test score changes as a function of test length, per
cent correct observed, and conditional probabilities of a master and nonmaster
getting any single item correct. (Additional graphs would show the effect of
varying the prior expectation of mastery on p(MfT)). In this example, the
prior expectation of finding a master in the examinee population is 90.
The conditional probabiliti2s in A, B, C, and D show the probabilities of a
master (MI) and nonmaster (M2) getting a typical item correct. Test length
is plotted on the abscissa and the probability of the examinee's being a
master (Ml) given his observed test score (based upon 7 correct of the total
test length) is plotted on the ordinate.

The effect of the test length variable on classification accuracy is
dramatic: if the p(MIFT) had to be at least .5 for a person to be called
a master, then scores of 707 correct on a 10 item test would lead to a,
mastery" classification. But a 70Z score on a 20 item test would lead to

a "nonmastery" classification. (Fig. 1A)



r ,

The effect of varying probabilities of a master making a correct response,
p(correctI11), can be seen by comparing graphs A, B, C, and D. For any test
length or observed test score, the probability of being in the mastery state
is greater in B than in A. This shift is most obvious for the 70% correct
curve. Note that 011IT) or A for an observed score of 70% (28 out of 40
correct) is approximately .04. However, the p(MliT) in B for 70% of a 40
item test correct is .37. The main reason for this abrupt change is the
lowered requirement for mastery, from .9 to .8. The robaullity that ".9
persons score only 707 on long tests is quite low, whereas for ".8 persons"

the proj)abiltty of scoring 70%, is rather high. Graphs 1C and 1D illustrate
further changes in,the classification probability due to only .1 step changes
in the probabilities of masters and nonmasters making a correct response.

The same data from Figure lA can be used to answer the second question
presented earl ier: How long must a test be, and what score is required for
classification decisions to be made with some specified lower limit of mis-
classification? Inspection of the curves in Figure 2 reveals that test
length markedly influences classification accuracy. For the 40 item test,
the region where p(glIT) is greater than .1 and less than .9 extends from
717 to 777. This means that the probability of Misclassifying an examinee
will exceed .10 only when observed scores range from 71% to 77%, correct. in

contrast, the region of the five item test for which p(M1(1) is greater than
.10 and less than 90 e:aends from about 26% to about 79%. Hence, there is
a much larger region for which the probability of misclassification exceeds
.10. This procedure therefore shows wnat scores must be obtained so that a
nonmastery dc(ision could be made with at ?cast 90% confidence; which, in
effect, force a reversal in the prior beliefs of the decision maker.
Educa ional and scientif'c importance of the study: The Bayesian approach
has been ta:,en by others in devising methods for classifying
examinees on the basis of test length and examinee qualities. However, the
present version is less theoretically cumbersome, and gives a straightforward
description of how classification accuracy is sensitive to the above variables.
A general finding demonstrated by, but not necessarily limited to a T;ayesian
model, is that setting percentage cutoff scores as a means for defining
mastery must like into account the test length. Classification accuracy is
not invariant with percent correct. i specific result peculiar only to a
Bayesian model is that classification accuracy is also a function of the
qualities of the examinee population, or at least the decision-maker's esti-
mates of those qualities. The model also allows confidence limits to be set
for a given test when the examinee population qualities have been specified;
thes confident o limits then constrain the region of .acceptable scores. Thus,
if a region of miselassification error can he tolerated by the decision maker
for a given population, the model specifies what the test length must be and
what range of'-scores must he obtained in order to stay within the desired
acceptable region.
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Assume that there are three states of mas-
tery, and unequal prior probabilities for
these three states. The educational deci-
sion-maker must provide estimates for the
prior probabilities of raster, p(Mi). For
this example let us assume the values to be:
p(M1) = .5; p(112) . .3; and p(M3) = .2. No
must also provide estimates for the condi-
tional probability of getting any given test
item right, riven each mastery state. The
following values will be used as the condi-
tional probability of getting an item right
given a mastery state: p(II11) = .8;
p(11:2) .6; p(11M3) = .5. The conditional
probabilities of getting an itel wrong
given a mastery state are: pi0IM1) = .2;
p(0112) . .4; and p(0! 13) . .5.

First we need to calculate the proba-
bility tnat an itel i,s_answered correctly.
For the overall population, p(tj = correct)
S

p(Ni)p(tj = correctl1i) = (.5)(:8) +
1=1

(.3)(.6) + (.2)(.5) = .68. Likewise,
S

p(tj . wrong) = o(r1i)p(tj = wrongltli
i=1

(.5)(.21 (.1)(.4) (.9)(.5) =. .32.

We also need to obtain J1.? set of conditional
probapilitles for tne al-ferent mastery states
given ttan an In,..:1,itAalj,te- was responded

to either correctly or wtonglx. The general
equation is:
p(Mi Itj) =

M)
Substituting the above values yields:
p(NlItj correct) . (.5)(.3) : .68 = .583;
p(12Itj = correct) = (.3)(.6) .63 = .265;
and p(131tj co,ect) (.:)(.5) : .68 = .147.
(Note that tne sum egJals 1.0.) Finally,
p(litj . wrong) . (.5)(.2) .32 . .3125
p(M210 = wrong) = (.3)(.4) : .32 = .375 and
p(M3itj wrong) . (.2)(.5) : .32 . .3125
If 6 items were answered correctly on a 10
item criterion-referenced test, the following
ii

p(Miltj) values result:

Ml = 3.9 x 10-4; = 6.8 x 10-6;
M3 = 9.6 x 10-8'

Finally, the general Bayesian formula yields
the conditional probability for each mastery
state given the total test score. For
example, p(MilT) =

(3.9 x 10-4)

(.5)9 [(3.9 x 10-4)4.(6.8 x 10-5)4.(9.6 x 10-8)

(.5)9 (.3)9 (.2)9

= 272.
Similar calculations yield p(M2(1) = .473
and p(M3IT) = .254.

In order to combine mastery states t12
and M3 into a single mastery state (which
could represent combining the two degrees of
nonmastery, Figure 4, Graph 0), the following
calculations are required. The values for

N
p(M1) and r p(MIltj) remain the same, .5

j=1
and 3.9 x 10-4 respectively. The new nonmas-
tery state (12') occurs as a result of
combining the previous states M2 and 113.
Ilence, p(12') = p(12) P(?13) = .3 + .2 = .5,
p('12'1 tj . correct) . p(''2Itj . correct) +
p(M3Itj = correct) = .265 + .147 = .412, and
p(21 tj = wrong) = p(12Itj = wrong) .1.

p(M3Itj . wrong) = .375 + .3125 = .6875.

Calculation of - p(M2'I tj) yields
j=1

1.09 x 10-3.

Entering
Bayesian
011

p(Ml'IT)

these new values into the general
Formvla, tne following values of
and p(112'(T) are obtained:

0 v in-4

(.5)9[3.9 x /C-.1 + 0.09 x 10-
(.5

= .264;

(2,) ) _ 1.09 x 10-3

(.5)T3.9 x 10-4) 51,09 x 10-3)

(.5)9
'(.5)9

-.736.
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